US 2006/0031815 Al

bining the Power Supply scheme of the present example
with schemata used for other sorts of peripheral devices,
allow composition of (or build-up) a more comprehensive
peripheral device schema. In turn, if the peripheral device
schema is combined with a host processing support com-
ponent scheme, then the result can be considered a singular,
comprehensive, embedded system schema.

[0046] If (as may happen on rare occasions) one of the
logical description facets can not be sensibly supported by
some specific type of scheme, a facet can be stubbed with
some appropriately innocuous implementation. A classic
stub always succeeds as an implementation (a stub is a
useful default implementation). The various schemata
according to embodiments of the present invention permit
some facets to be mandatory and while others are optional.
In addition, default stubs are provided for most optional
facets. If a given description omits them, the default applies.
In many cases, this technique permits the invention to
support otherwise incompatible (specific) types of power
supplies. Judicious use of stubs can force a wide range of
Power Supplies to meet a schemes expectations.

Fixed Executable Images & the Logical Schema

[0047] All peripheral devices may be described according
to some generalized facet scheme. Each logical type of
peripheral device matches one of these generalized facet
templates (referred to herein as schemes). While this tech-
nique can be used in any number of contexts, and while the
types of schemata used can vary as widely, each application
context is best served by some correspondingly optimized
collection of schemata. For instance, there is no reason to
support voltage sensors in devices/products that will never
include even a single voltage sensor.

[0048] As a result, it is possible to predefine a limited
schema that makes provision for describing only those types
of hardware peripherals that are applicable (and/or expected)
for a given (application) context. One may choose to include
additional schemata to increase the range of applicability (of
the resulting firmware/software “part”). The expressive
range of the chosen schema maps to the expected range of
applicability for the corresponding embedded software/firm-
ware/host part.

[0049] A predetermined, maximum number of logical
peripheral device description instances are also employed.
While the maximum number chosen is arbitrary, the present
invention can leverage this chosen number of descriptions.
As a practical matter, this means that different embedded
software/firmware parts can reserve arbitrary—but a
priori—known amounts of non-volatile (NV) storage. This
fixed amount chosen tends to correspond to the maximum
number of logical (and/or physical) description instances
that might ever be needed (in a given application context).
This maximum is preferably chosen to be large enough to
cover most/all physically feasible peripheral device configu-
rations. Although the storage size is preferably fixed, accord-
ing to embodiments of the present invention storage may,
alternatively, be dynamically allocated. Accordingly, the
embedded firmware/software part can be either a fixed size
or variable.

[0050] Those skilled in the art will realize that the maxi-
mum number of description instances permitted is often a
function of costs associated with the product in which a

Feb. 9, 2006

given firmware/software part is to be embedded. While
additional non-volatile storage chips can expand the opera-
tional host hardware environment (for embedded software/
firmware parts), such additional chips will increase the cost.

[0051] While the present invention works with arbitrary
amounts of dynamically allocated storage, those skilled in
the art will realize that the present invention works when an
arbitrary-but-fixed number of description entries are
required. The present invention works with a tightly capped
amount of non-volatile storage. If a maximum number of
description instances is chosen, the layout of the embedded
firmware/software’s executable image does not change. A
build-time option for choosing this maximum number of
description entries is thus a part of embodiments of the
present invention.

Free-form Description Binding

[0052] Embodiments of the present invention employ run-
time binding through so-called “function pointers” in order
for the embedded software/firmware code to bind to the
proper logical interface for any given peripheral component.
Generally the build-time compiler’s calling conventions are
followed, whereby each logical hardware component
description supplies a handle (e.g., a memory address) to a
device type/schema specific data structure. This data struc-
ture, in turn, maps to various device description-specific
behaviors (e.g., function pointers).

[0053] The logical interfaces, according to embodiments
of the present invention, are parameterized. This allows
generalizations about a logical category of peripheral hard-
ware components, such as Power Supplies, and permits
many different ways to communicate with all of these
diverse devices.

[0054] Preferred embodiments of the present invention
pass a number of opaque bits as an argument/parameter to
each (and all) of our logical behavior facets. The inventors
have found that somewhere between 64 and 256 bits will
often suffice for most arguments/parameters (if tightly
packed bit fields are used aggressively). Those skilled in the
art will, of course, realize that the precise number of bits
depends upon the system schema in question.

[0055] This parameter passing approach allows the inven-
tion to handle both the variable numbers, and the variable
types, of behavior (e.g., function/method) parameters (e.g.,
function/method arguments). When describing very general
concepts, like power supplies, it is often the case that more
specific sub-types of power supplies will need vastly differ-
ent numbers, and different types, of parameters. Rather than
the need to re-code/re-program, the present invention adopts
a prototype based approach. All prototype behaviors need to
have an interchangeable and/or standard interface.

[0056] Recall, that embedded firmware/software parts
should preferably not have to be rebuilt (i.e., re-compiled/
interpreted) when changes are made to the system. They
must directly work with the variable numbers of interface
arguments.

[0057] As an example, assume that a block of bits in a
particular implementation is 64-bits. These 64 bits are
typically pushed (often as machine words or dual machine
words) onto the function call (stack frame) associated with
each logical interface invocation (at run-time). These 64 bits



